Two-Dimensional Heat Transfer Calculation Software

Owen Bensel
Luke McLaughlin
David Tobin

Brendan Taedter

Submitted on 5/10/2017

ME 3360: Transport Phenomena
Dr. Michael Stoellinger

Table of Contents

Problem Statement.o 1
Existing TechnOlO@y........ouiiniii e 1
CONtEMPOTATY [SSUES. ...ttt ettt e et et et e e e e e e e e eens 2
Assumptions and Calculation Methodology............coiiiiiii i 3
Results and ConClUSION.ouiui e 4
Attachments

Attachment 1: 3-d Rendering of Wall........ ... 5

Attachment 2: Finite Volume Method Matlab Script.............cooooviiiiiiiiiiiiiiiin.n. 6

Attachment 3: Cost Analysis Matlab Script............cooviiiiiiiiiiii 20

Problem Statement

A house in Laramie, WY has a 6.5m long insulated wall that stands 2.5m tall. The exterior of the
wall is made of hardwood siding with a thermal conductivity value of k = 0.16 W/mK. The wall
is filled with 10 studs which are spaced evenly which are also made of hardwood with

k =0.16 W/mK. The insulation within the wall and between the studs is a fiberglass insulation
initially having a density of 16 kg/m? with a thermal conductivity of k = 0.046 W/mK. Finally,
the interior of the wall is a gypsum wallboard that has thermal conductivity of k = 0.17 W/mK.
Assume that the exterior wall temperature is maintained at a constant 0°C and the interior
temperature of the wall is maintained at a constant 20 °C. First determine the heat transfer
through the wall with the given insulation (16 kg/m3) being used. Then, re-calculate the heat
transfer rate through the wall using a more expensive fiberglass insulation with a density of
40kg/m> and thermal conductivity k = 0.035 W/mK to see how much heat would be saved in a
typical year. Perform a cost analysis to determine if the more expensive insulation would be a
wise investment.

Figure 1: Top View of Wall Segment

Wall Board
k=0.17 W/imK

T,=20°C

k=0.18 WimK

Hard Wood Stud
k=0.16 WimK

To=°°C

Existing Technology

The Lawrence Berkeley National Laboratory developed a computer program very similar in
theory to the one we created for this project. Their program, called THERM, models two-
dimensional heat-transfer effects in building components such as windows, walls, foundations,

roofs, and doors; appliances; and other products where thermal bridges are of concern. Similar to
our Matlab program, THERM’s two-dimensional conduction heat-transfer analysis is based on
the finite-element method, and allows the user to evaluate a product’s energy efficiency and local
temperature patterns.

Another two-dimensional heat transfer software is HEAT2, which differs from THERM in that it
appears to better handle optimization problems like insulation fitting, floor heating systems, and
heat losses from a building to the ground. HEAT?2 also uses the finite-element method, and
features automatic mesh generation. This program can handle up to 6,250,000 finite elements, or
“nodes”, as the program’s developers call them. In contrast, Matlab is limited to less than 40,000
finite elements if a reasonable runtime is desired.

Contemporary Issues

Temporary Housing

Because our program is not nearly as sophisticated as THERM or HEAT2, we envision it being
used for applications in which ease of use is more important than the precision of the results. In
addition, our program is limited to analyzing a simple wall or similar structure. Therefore, we
could see our program used for designing temporary homes or shelters for people living in
underdeveloped, war-torn, or impoverished areas. These structures would not have to be built
with extreme durability, efficiency, or other qualities of more permanent housing, but it would
still be important to ensure they maintain a comfortable indoor temperature in their respective
climates.

Reducing Thermal Bridging

We noticed in our analysis of the wall that the studs can greatly enhance heat transfer across the
wall due to their heat transfer coefficient being significantly higher than that of the insulation.
This is known as thermal bridging, and it can be seen pretty clearly in poorly built houses during
a frost. While a wall is covered in frost, you may notice vertical lines where there is no frost at
all. These lines correspond to studs in the wall transferring heat to the outside and melting the
frost.

Considering that studs make up a significant portion of framed walls, this can lead to a great deal
of energy losses from thermal bridging. One building method to prevent this issue is the use of
structural insulated panels (SIPs). SIPs are load-bearing panels made by sandwiching dense
Styrofoam insulation between two sheets of plywood and are used as a substitute for traditional
framed walls. The panels are very wide and although they do still require studs to assemble, they
increase the spacing of studs significantly. Traditionally studs are spaced 16 inches apart, but
with SIPs, stud spacing can be increased to several feet. This greatly reduces the portion of a
wall’s area made up of studs, and therefore reduces thermal bridging and saves the homeowner
money.

Assumptions and Calculation Methodology

Simplifying the heat transfer process down to a 2-d conduction approach, our team created a
Matlab script that plots the temperature distribution throughout the insulated wall and calculates
the total heat transferred through the wall. Because our analysis dealt with only one symmetrical
segment of the entire length of wall, the left and right boundaries of the segment were assumed
adiabatic. That is, we said the temperatures just inside the boundary are equal to the
corresponding temperatures directly across and outside the boundary. Additionally, the interior
and exterior wall surfaces were assumed to be at fixed temperatures of 20°C and 0°C,
respectively. For the cost analysis, it is assumed that the indoor temperature is constant
throughout the year, and the outside temperature is an average value over the year.

Hand calculations were initially performed using approximate circuit-resistance analysis to find
the expected heat transferred through the wall. The heat transferred through the wall was
calculated by hand, first for surfaces normal to the y-direction being isothermal, and then for
surfaces parallel to the y-direction being adiabatic. These preliminary calculations provided us
with “reasonable” answers so we were better able to judge the correctness of our Matlab
program’s results. The heat transfer rate through the insulated wall was then found using mesh
analysis in Matlab (see Attachment 2 for the full Matlab script). The basis of our Matlab script
came from the Homework 5 script used for simpler 2-d conduction. By redefining boundary
conditions, generating a new mesh, and matching each material’s k value with its corresponding
positions in the wall segment, the Matlab script calculates the total heat transferred through the
2-d insulated wall and plots the temperature distribution. The mesh calculates the heat transferred
through an individual segment, shown in Figure 1. Because the entire wall is composed of ten
identical segments, the total heat transferred through the wall is ten times the heat transferred
through one segment.

Figure 1: Top View of Wall Segment

Wall Board
k=0.17 WimK
T,=20°C
adiabatic
adiabatic
0.012m]
0.130 m
Insulation
k =0.049 W/mK
.]
A 0.008 m
Hard Wood Stud
k=0.16 WmK

n=0°C

Results and Conclusion

The fiberglass insulation having a density of 16kg/m?® with a thermal conductivity of

k =0.046 W/mK was used for all initial calculations of heat transfer and temperature
distribution. See Table 1 for results of initial hand calculations. Initially, our Matlab script
returned an unreasonably large heat transfer value. We were able to determine that the inaccurate
results were due to an inconsistency in the way the axis were defined throughout the script. After
performing initial hand calculations and correcting the functionality of the Matlab script, the heat
transfer through the wall was found to be 138 W. This value is deemed reasonable due to its
similarity to the results of the hand calculations. The differences in the three heat transfer values
are due to differences in each method. Theoretically, the most accurate result is provided by
Matlab’s finite volume method. The heat transfer through the wall with the better insulation was
calculated simply by updating the k value of the insulation. See Table 2 for results of Matlab
calculations, and Figure 2 for a plot of the temperature distribution in one wall segment. From
Table 2, results show that the more expensive insulation decreases the heat transfer through the
wall by 26 W, or about 19%.

To complete the cost analysis, we first determined that it costs nearly $38 more to fill this wall
with the better insulation. Then, using the heat transfer values calculated with Matlab and using a
rate of $0.20 per kilowatt-hour from Rocky Mountain Power, it was determined that with the
better insulation, the homeowner would save $44.55 each year. Therefore, it would only take
about ten months to break even, meaning the better insulation would be a wise purchase. See
Attachment 3 for the cost analysis Matlab script, which contains details of insulation prices,
quantity needed, and other relevant information.

Table 1: Results of Hand Calculations

Insulation 1 (16 kg/m?) Insulation 2 (40 kg/m?)
Heat transferred through wall, (W) 126 102.7
(Surfaces normal to Y isothermal)
Heat transferred through wall, (W) 130.1 105.3
(Surfaces parallel to Y adiabatic)

Table 2: Results of Matlab Calculations

Insulation 1 (16 kg/m?) Insulation 2 (40 kg/m?)
Heat transferred through wall, (W) 138 112

Figure 2: Matlab Plot of Temperature Distribution in Wall Segment

Temperature [C] result (using linear interpolation between cells) for a single wall segment

Attachment 1: 3-d Renderings of Wall

w

G

¢

Attachment 2: Finite Volume Method Matlab Script

Table of Contents

TRANSPORT PHENOMENA DESIGN PROJECTcootiiiiiiiiiieieeiree et 1
170U | PP PPTTP 1
Creating K M SIS ...t ettt et et e e et et a e e e 2
Generate a computational grid using NI,NJ grid liNeSooeuniiiiiiiii e 4
SEL UP [INBAN SYSEOIM ..ot et e et et e et e e et e et e eaa s 5
BOUNAAIY CONAITIONS ...ttt e e e e e e et e et e e et e e eaeeeanns 5
LoOp OVEr iNLEINal CEIIS ... e e et 5
L0031 £ PPN 6
BOUNTAITES ...ttt e e et e et e e 7
SOIVE TINEAI SYSLEIM ... et et et et et e et e e et e e e e eanns 9
Find Total Q through Wallooenii e e e 9
POSEDIOCESSING ... ettt ettt ettt e et e et e et e e e e et et e e e et et e e e ean s 10

TRANSPORT PHENOMENA DESIGN PROJECT

%2-D Heat Transfer Software
%VE3360- 01

%avi d Tobin

%Owen Bensel

% uke McLaughlin

o%Br endan Taedt er

uscript outline provied by M Stoellinger

9Note: All units in base SI system(m W K, etc.) and their
%lerivitives (eg. W(nrk)) unless otherw se stated.

Input

cl ear
clc

% Ceonetry: Assune the coordinate systemsits in the south-west corner

L = 0.65;

W= 0. 15;

% BC s

Thl = 20 + 273;
Th2 = 0 + 273;

% Heat generation term
gdot = O;

% Nurmber of grid lines in y-direction
N = 76;
yg=0: W(N -1): W

% Nurmber of grid lines in x-direction

Ni = 131;
xg= 0:L/(Ni-1):L;

Creating K Mesh's

k w=.16; %M\od
k i = .046; % nsul aiton
k_ g =.17; 9%\l board

oDefi ne nmesh of k values at each cell center for the section of wall.
%ach cell in the overall nesh contains only one k val ue.

K=zeros(N -1,Ni -1);

K(:,:)=k_i;
for i=7:71
for j=62:69
K(i,) =k_w
end
end
for i=1:6
K(i,:)=k_w
end
for i=72:75
K(i,:)=k_g;
end

%/i sual Representation of K nesh

figure (1)
Z = flipud(K);

surf(Z,' EdgeCol or',"' None');

col or bar;
x| abel (" x")
yl abel ("y")

title('Visual Representation of K nmesh (at cell centers) [Wnk]');

col ormap(j et)

vi ew(2)

%efine 4 nore nmeshes of k val ues, representing the k values at the

nort h,

%sout h, east, and west faces, respectively.

KNave=zeros(N -1, Ni - 1)
KSave=zeros(N -1, Ni - 1)
KEave=zeros(N -1, Ni - 1)
KWave=zeros(N -1, Ni - 1)

%@ nternal Cells
for j = 22N -2
for i = 2:N-2

%efine K values for cell and bordering cells, interpolate for

%val ue at cel

interfaces (just take the nean since distances

%bet ween each cell center are the sane)

KP=K(j,i); % of current cell
KN=K(j-1,i); %< of North cell
KS=K(j+1,i); %< of south cell
KE=K(j,i+1); 9% of east cell
KWeK(j,i-1); % of west cell

boundari es

%-i nding k value at P cell

KNave(]j,i)=(KN+KP)/ 2;
KSave(j,i)=(KS+KP)/ 2;
KEave(j,i)=(KE+KP)/ 2;
KWave(j,i)=(KWKP)/ 2;
end
end

%Nort h Boundary

] =1

for i = 2:N-2
KNave(j,i)=K(j,i);
KSave(j,i)=K(j,i);
KEave(j,i)=K(j,i);
Kvave(j,i)=K(j,i);

end

%Sout h Boundary

j=N-1;

for i = 2:N-2
KNave(j,i)=K(j,i);
KSave(j,i)=K(j,i);
KEave(j,i)=K(j,i);
KWave(j,i)=K(j,i);

end

%cast Boundary

i =Ni -1;

for j = 2:74
KNave(j,i)= (K(j,i)+K(j-1,i))/2;
KSave(j,i)= (K(j,i)+K(j+1,i))/2;
KEave(j,i)= K(j,i);
Kvave(j,i)= K(j,i);

end

%\ést Boundary

i =1;

for j = 2:74
KNave(j,i)= (K(j,i)+K(j-1,i))/2;
KSave(j,i)= (K(j,i)+K(j+1,i))/2;
KEave(j,i)= K(j,i);
Kvave(j,i)= K(j,i);

end

9NW cor ner

KNave(1, 1) =K(1, 1);
KSave(1, 1)=K(1,1);
KEave(1, 1) =K(1, 1);

Kwave(1, 1) =K(1, 1);

9%NE cor ner
KNave(1, 130) =K(1, 130);
KSave(1, 130) =K(1, 130);
KEave(1, 130) =K(1, 130);
KWwave(1, 130) =K(1, 130);

%BW cor ner
KNave(75, 1) =K(75, 1) ;
KSave(75, 1) =K(75, 1) ;
KEave(75, 1) =K(75, 1) ;
KWave(75, 1) =K(75, 1) ;

%BE cor ner
KNave(75, 130) =K(75, 130) ;
KSave(75, 130) =K(75, 130) ;
KEave(75, 130) =K(75, 130) ;
KWave(75, 130) =K(75, 130) ;

Visual Representation of K mesh (at cell centers) [W/mk]
80 r

70

60

50

> 40

101
30

20

10

0 20 40 60 80 100 120 140
X

Generate a computational grid using NI,NJ grid
lines

% Define grid coordi nate vectors
X = (0:L/(N-2):L)";

10

y = (0:W(N-1):W";
% The mesh defines a total Nc finite volune cells == total of Nc

unknowns
Nc = (N-1)*(N-1);

Set up linear system

%initialize coeffcient matrix A and rhs vector Q
A = zeros(Nc, Nc);
Q = zeros(Nc, 1);

Boundary conditions

% Set north boundary tenperature to Th2

TN = Th2;

% Set south boundary tenperature to Thl

TS = Thi;

% Set east boundary tenperature to (Tbl+Tbh2)/2 (only for tenperature
plot!)

TE = (Th1+Th2)/ 2;
% Set west boundary tenperature to (Tbl+Tbh2)/2 (only for tenperature

plot!)
TW = (Th1+Tb2)/ 2;

Loop over internal cells

for j = 2:N-2
for i = 2:Ni-2

% get index of cell p
P=y(j-1) * (N-1)+i;
% get cell size
dy = xg(i+1)-xg(i);
dx = yg(j+1)-yg(j);
% East i ndex and coefficient
E = P+1;
AE = -KEave(j,i)*dy/(dx);
A (P,E) = AE;
% West i ndex and coefficient

W= P-1;

AW = - KWave(j,i)*dy/ (dx);

A (PW = AW

% North index and coefficient
N = P+(Ni-1);

AN = -KNave(j,i)*dx/(dy);

A (P,N) = AN

% Sout h i ndex and coefficient
S =P (N-1);

AS = -KSave(j,i)*dx/(dy);

A (P, S) = AS;

% Cel | coefficient

AP = - (AS+AN+AWHAE) ;

11

A(P, P) = AP;

% hs vect or

Q P) = qdot *dx*dy;
end %

end %

Corners

% Sout h- West cor ner

%get index
P=1;
%\ést i ndex and coefficent
AWEQ; % k* 2* dy/ dx; UBECAUSE FLUX=0!
%North i ndex and coefficent
N= P+(N -1);
AN=- KNave(75, 1) *dx/ (dy) ;
A(P, N) =AN;
%Bout h i ndex and coefficent
AS=- KSave(75, 1) *2*dx/ dy;
%cast i ndex and coefficient
E=P+1;
AE=- KEave(75, 1) *dy/ dx;
A(P, E) =AE;
%Cel | Coefficient
AP=- (AS+AN+AWHAE) ;
A(P, P) =AP;
% . h.s.
Q P) =qdot *dx*dy - ((Th1*AW +(Tbh1*AS));

% Nor t h- West cor ner

%get index
P=((Ni-1)*(N-1))-(N-2);
%\ést i ndex and coefficent
AWEQ; % k* 2* dy/ dx; YBECAUSE FLUX=0!
%North i ndex and coefficent
AN=- KNave(1, 1) *2*dx/ dy;
%Bout h i ndex and coefficent

S= P-(N-1);
AS=- KSave(1, 1) *dx/ (dy);
A(P, S) =AS;

%cast i ndex and coefficient
E=P+1;
AE=- KEave(1, 1) *dy/ dx;
A(P, E) =AE;

%Cel | Coefficient
AP=- (AS+AN+AWHAE) ;
A(P, P) =AP;
% . h.s.
Q P)=qdot *dx*dy - ((Tbl*AW +(Th2*AN));

% Sout h- East cor ner

%get index
P=(N -1);

12

%\est index and coefficent
WEP- 1;
AWE- KWave(75, 130) *dy/ dx;
A(P, W =AW
%North i ndex and coefficent
N= P+(N -1);
AN=- KNave(75, 130) *dx/ (dy) ;
A(P, N) =AN;
%Bout h i ndex and coefficent
AS=- KSave(75, 130) *2*dx/ dy;
%cast i ndex and coefficient
AE=0; % k*2*dy/ dx; YBECAUSE FLUX=0!
%Cel | Coefficient
AP=- (AS+AN+AWHAE) ;
A(P, P) =AP;
% . h.s.
Q P)=qdot *dx*dy - ((Tbl*AE)+Tbl*AS);

% Nor t h- East cor ner

%get index
P= (Ni-1)*(N -1);
%\est index and coefficent
WEP- 1;
AWE- KWave(1, 130) *dy/ dx;
A(P, W =AW ;
%North i ndex and coefficent
AN=- KNave(1, 130) * 2*dx/ dy;
%Bout h i ndex and coefficent
S= P-(N-1);
AS=- KSave(1, 130) *dx/ (dy);
A(P, S) =AS;
%cast i ndex and coefficient
AE=0; % k*2*dy/ dx; YBECAUSE FLUX=0!
%Cel | Coefficient
AP=- (AS+AN+AWHAE) ;
A(P, P) =AP;
% . h.s.
Q P)=qdot *dx*dy - ((Tbl*AE)+Tb2*AN);

Boundaries

%Nort h boundary

=1
for

i = 2:N-2
P= ((N-1)*(N -2)) +i;
okast i ndex and coefficent

E= P+1;

AE= - KEave(j,i)*dy/(dx);
A(P, E) =AE;

%\ést i ndex and coefficent
W P-1;

AWE- KvWave(j , i) *dy/ (dx)
A(P, W =AW

13

%Bout h i ndex and coefficent

S= P-(N-1);

AS=- KSave(j,i)*dx/ (dy);

A(P, S) =AS;

%efi ne AN

AN= - KNave(j,i)*2*dx/ (dy);

%to get cell Coefficient

AP=- (AS+AN+AWHAE) ;

A(P, P) =AP;

% .h.s. vector

Q P) =qdot *dx*dy- (Th2* AN) ;
end

%Sout h boundary
j=N-1;
for i = 2:N-2
P=i;
%ast index and coefficent
E= P+1;
AE=- KEave(j,i)*dy/ (dx);
A(P, E) =AE;
%\est index and coefficent
W P-1;
AWE- KWave(], 1) *dy/ (dx);
A(P, W =AW
%North index and coefficent
N=P+(Ni - 1);
AN=- KNave(j,i)*dx/ (dy);
A(P, N) =AN,
%efine AS
AS = -KSave(j,i)*2*dx/ (dy);
%to get cell Coefficient
AP=- (AS+AN+AWHAE) ;
A(P, P) =AP;
% . h.s.
Q P)=qdot *dx*dy - (Tb1l*AS);
end

% West boundary
i =1;
for j = 2:N-2
P= (j-1)*(Ni-1)+i;
%cast i ndex and coefficent
E= P+1;
AE=- KEave(j,i)*dy/ (dx);
A(P, E) =AE;
%North i ndex and coefficent
N= P+ (N -1);
AN=- KNave(j,i)*dx/ (dy);
A(P, N) =AN;
%Bout h i ndex and coefficent
S=P-(N -1);
AS=- KSave(j,i)*dx/ (dy);
A(P, S) =AS;

14

%efi ne AW
AWE 0; % k*2*dy/ (dx) ; YBECAUSE FLUX=0!
%to get cell Coefficient
=- (AStAN+AWHAE) ;
A(P, P) =AP;
% . h.s.
Q P)=qdot *dx*dy - (Tbl*AW;

end

% East boundary
i =N -1;
for j = 2:N-2
P=(j)*(N-1);
%\ést i ndex and coefficent

W P-1;
AWE- KWave(], i) *dy/ (dx);
A(P, W =AW
%North index and coefficent
N= P+ (Ni-1);
AN=- KNave(j, i) *dx/ (dy);
A(P, N) =AN,
%sout h i ndex and coefficent
S=P-(N -1);
AS=- KSave(j,i)*dx/ (dy);
A(P, S) =AS;
Y%efine AE
AE=0; % - k*2*dy/ (dx) ; YBECAUSE FLUX=0!
%to get cell Coefficient
=- (AStAN+AWHAE) ;
A(P, P) =AP;
% . h.s.
Q P)=qdot *dx*dy - (Tbl*AE);

end

Solve linear system

Find

T = linsolve(A Q;

Total Q through wall

% Process/ expl anati on:

% 1. Find the heat flux through each individual cell on the bottom
row of the nesh (inner edge of wall) with q" = -k g (T.cell - Tbl)/
(dy/ 2).

% 2. Find the heat flow through each individual cell on the bottomrow
of the the nmesh (inner edge of the wall) with g = gq" * dx * (height

of wall).

% 3. Find the total heat flow through the entire bottom edge of the
wall with g.total = sun(q) * 10 (all bottomcells on all 10 wall
segnents.)

% 4. Repeat 1-3 for the top row of the nesh (outer edge of the wall)
to check that the heat flow through the top edge of the wall is
(approxi mately) equal to the heat flow through the bottomv edge

15

of the wall (because heat flux through the horizontal (east/west)
boundaries = 0!).

howal | = 2.5: %dight of wall

Q bottonrow = zeros(1,N -1);
for i=1:N -1

Qbottonrow (i) = -k_g*(2*(T(i)-Thl)/dy)*dx*h_wal Il ;
end

Q TOTAL_bottom = (sun{Q_bottonrow))*10;

Qtoprow = zeros(1,Ni-1);
for i=1:N -1

Qtoprow (i) = k. w(2*(T((N -2)*(N -2)+i)-Tb2)/dy)*dx*h_wal | ;
end

Q TOTAL_top = (sun(Q_toprow))*10;

%Rounds Final Results to nearest integer

Q TOTAL_bottom rounded = int16(round (Q TOTAL_bottonj);
Q TOTAL_top_rounded = int16(round (Q TOTAL_top));

%0 splay Final Results

fprintf(' The total heat flow through the inner surface of the wall is
%l Watts.\n', Q TOTAL_bottom rounded)
fprintf(' The total heat flow through the outer surface of the wall is

%l Watts.\n', Q TOTAL_t op_rounded)

The total heat flow through the inner surface of the wall is 138
Watts.
The total heat flow through the outer surface of the wall is 138
Watts.

Postprocessing

% Pl ot the conmputaional nesh (this works well only for small neshes N
< 20)
% dr awresh(x, y);

% % Pl ot the FV-solution (using the cell centered val ues, the boundary
val ues

% % and |inear interpolation in between)

Pl ot Fvsol (x,y, T, TS, TN, TE, TW ;

% % Pl ot the exact sol ution
%Pl ot EXACTsol (x, vy, Tbl, Th2)

%&nd % nmai n function

16

A
function fdrawresh(x,y)
Description: Draws a structured 2D finite vol une nesh

Nl = size(x,1);
NJ= size(y,1);

[X, Y] = nmeshgrid(x,y);

figure(' Nane',' Mesh');
hol d on;
pl ot horizontal gid |ines
for j = 1:NJ
plot (X(j,:),Y(j,:), k-","LineWdth',1);

end
pl ot vertical gid Iines
for i = 1:N
plot (X(:,i),Y(:,i),"k-","LineWdth',1);
end

title(' conputational nesh')
x| abel (" x")

yl abel ("y")

axi s equal

put cell centers and index in the plot
for i=1:N-1
for j=1:NJ-1
[= (j-)*(NI-21) +i;
% cel |l center coordinates
xp = (x(i+1)+x(i))/2;
yp = (y(j+1)+y(j))/2;
pl ot (xp, yp,"' ko' ,"' MarkerSi ze', 2)
% put the | abel text there
tx = xp + (x(i+1)-x(i))/20
ty =yp + (y(i+1)-y(j))/20;
text(tx,ty,int2str(l)," FontSi ze', 10);
end
end
hol d of f;

function PlotFVsol (x,y, Tc, TS, TN, TE, TW
% Description: Contour plot of tenperature solution

Nl = size(x,1);
NJ= size(y, 1);

% Reconstruct cell ceter |ocations
xc = zeros(N -1,1);
yc = zeros(NJ-1,1);
for i = 1:N-1
xc(i) = (x(i+1)+x(i))/2;
end
for j = 1:NJ-1
ye(i) = (y(i+1)+y(j))/2;
end

% Add the boundary coordi nates
Xc [x(1);xc;x(N)T;
yc = [y(1);yciy(N)];

% FV-solution as 2-d array
Tsol = zeros(N +1, NJ+1);

% | nsert boundary conditions

% sout h

Tsol (:,1) =TS

% north

Tsol (:,NJ+1) = TN,
% west

Tsol (1,:) = TW

% east

Tsol (NI +1,:) = TE;

for i = 1:N-1
for j = 1:NJ-1
% Correspondi ng cell center solution index
I = (j-)*(N-1) +i;
Tsol (i +1,j+1) = Tc(l);
end
end

% Create nmatlab plotting grid based on cell centers
[X, Y] = meshgrid(xc,yc);

X =X;

Y,

Y

figure (2) %' Nane','FV tenperature contours');
% Pl ot the contour |ines

contourf (X Y, Tsol -273. 15);

col ormap(jet);

col or bar;

x| abel (" x")

yl abel ("y")

axi s equal ;

Tmax = max(max(Tsol));
Tmn = mn(mn(Tsol));
caxi s([Tm n-273.15 Tmax-273. 15])

title(' Tenperature [C] result (using linear interpolation between
cells) for a single wall segment');

A
function Pl ot EXACTsol (x,y, Tbhl, Th2)

% Nunmber of terms used in the series expansion exact solution
Ne = 200;

Nl = size(x,1);
NJ= size(y,1);

L
W

X(N)-x(1);
y(NJ)-y(1);

% Reconstruct cell ceter |ocations
xc = zeros(N -1,1);
yc = zeros(NJ-1,1);
for i = 1:N-1
xc(i) = (x(i+1)+x(i))/2;
end
for j = 1:NJ-1
ye(i) = (y(i+1)+y(j))/2;
end

% Add t he boundary coordi nates
XC [x(1);xc;x(NI)T;
yc = [y(1);yc;y(NI)];

% Create matlab plotting grid based on cell centers and boundari es
[X, Y] = neshgrid(xc,yc);
X =X;
Y=Y,
% Exact solution as 2-d array
theta = zeros(N +1, NJ+1);
for i = 1:NI+1
for j = 1:NJ+1
% Loop to calculate the summation over the Ne-terms of the
series
for n = 1:Ne
theta(i,j) = theta(i,j) + 2/pi * ((-1)"(n+l)+1)/n *
sin(n*pi *X(i,j)/L)...
* sinh(n*pi *Y(i,j)/L) / sinh(n*pi*WL);
end
end
end

figure(' Nane',' Exact solution on FV grid');

19

% Pl ot the contour |ines

contourf (X, Y, theta*(Th2-Tbl)+Th1l-273. 15);

col ormap(jet);

col or bar;

x|l abel (" x")

ylabel ("y")

axi s equal ;

title(' Exact Tenperature [C] Distribution on FV grid');

ture [C] result (using linear interpolation between cells) for a single wall segme

15
0.1 _

- 10
0.05 5

0 0

Published with MATLAB® R2016b

Attachment 3: Cost Analysis Matlab Script

$Cost Analysis

$This script will calculate the amount of money saved in a year by using
$higher density insulation (40kg/m"3 rather than 16 kg/m"3). To determine
$insulation "R-values", it was first helpful to convert metric densities
$to English units. Then, using Home Depot's website, the densities of
$different R-values were found by dividing the listed weight of a roll of
$each R-value by its calculated volume. Doing this, it was seen that the
$given low density insulation corresponds to "R13", and the higher density
$insulation corresponds to "R15".

clc

clear

format bank
format compact

gl=138; %Total heat lost using lower density insulation, obtained
$from main script (W) (J/s)

g2=112; %Total heat lost using higher density insulation, obtained
$from main script (W) (J/s)

L=6.5; %Length of wall, (m)
t=365*24*60*60; S%Number of seconds in a 365-day year (s)
V=(L-(L/.65)*.04)*.13*2.5*35.315; %Total volume of insulation needed, (ft"3)

R13 cost=2.08; %Cost of R13 insulation, dollars per cubic foot
R15 cost=2.62; $Cost of R15 insulation, dollars per cubic foot

Shttp://www.homedepot.com/b/Building-Materials-Insulation-Fiberglass/Faced/
$13/15/N-5yclvZbay721z0r65uzlz0zyamz1z0zybk?NCNI-5

R13 total=R13 cost*V; $Cost to fill wall with R13
R15 total=R15 cost*V; %Cost to fill wall with R15

disp('Cost to fill this wall with R15 rather than R13 (dollars):')

Cost diff=R15 total-R13 total; %How much more it costs to fill wall with
%R15 than R13

disp (Cost diff)

E lostl=ql*t*2.7777778*10"-7; $Energy lost through R13 in one year, (kWh)
E lost2=q2*t*2.7777778*10"-17; $Energy lost through R15 in one year, (kWh)

Esaved=E lostl-E lost2; %Energy saved over one year by using R15 instead
$of R13, (kWh)

E cost=.20; $Cost of energy per kWh, Rocky Mtn Power (dollars per kWh)

disp ('The money saved from energy savings, in dollars per year:')

Savings=E cost*Esaved; %Money saved, dollars per year
disp (Savings)

20

disp('Years required to break even:')

Break even=Cost diff/Savings; %How long it will take to save the amount
$of money spent by using the better
$insulation, (years)

disp (Break even)

Cost to fill this wall with R15 rather than R13 (dollars):

37.81

The money saved from energy savings, in dollars per year:
45.55

Years required to break even:
0.83

21

Published with MATLAB® R2016b

	TransportDesignProject.pdf
	Table of Contents
	TRANSPORT PHENOMENA DESIGN PROJECT
	Input
	Creating K Mesh's
	Generate a computational grid using NI,NJ grid lines
	Set up linear system
	Boundary conditions
	Loop over internal cells
	Corners
	Boundaries
	Solve linear system
	Find Total Q through wall
	Postprocessing

